12月9日

1.插网线，连上网，拷贝三个文件夹，dos，金蝶dos资料，防火墙。

2.先安装防火墙，运行setup，有个地方要填代理。

3.运行BOSModular_zh_CN.bat进入金蝶bos。

4.在帮助里找到bos licence管理，申请，网上注册，这里有本机特征码记住，之后申请时要用到。申请之前先注册，要完善个人信息才能继续申请。申请到的licence被发到邮箱里，下载下来并导入。

5.将业务建模工具，设计开发工具，java这三个常用透视图弄出来。打开svn资源库研究。

6.新建资源库位置，url为svn://9.1.172.49

7.从服务器上检出工程。创建的workspace名字太长，之后可能会出问题，所以改为短的，如一个w，添加jar包。

8.在java透视图中，工程上右键配置构建路径，将输出文件夹指定到特定输出文件夹，即工程下的classes文件夹，否则之后会报错。

9.在业务建模工具中，要更新解决方案，选择从远程服务器更新，服务器地址为10.1.69.4，勾选使用被动模式连接这一项。更新一下。

10.设置解决方案，同步一下各种目录。测试帐套，先刷新下，再选kingdee的那个，测试连接。(有可能需要改server.xml)

11.启动测试，跑起来就哦了。

（设计开发中的实体，表，关系，query，editui，listui都具体是什么）。

12.在建模工具中，新建业务组别，相当于包，在具体的组别中新建业务单元，业务单元分为基础资料和业务单据两种。

13.建模画完要发布之前，要确保服务器和客户端都是停止的，发布完再启动。更改java类，在其中添加方法时，则可以只单独重启客户端或服务器即可。改完代码记得刷新。各种刷新。如果不添加方法，只是改方法中的代码，则不需要重启。

在设计开发工具中有布局按钮，是相对参照物调整的，实体的选择框是参照物

因为业务单元的名称将作为自动生成Java代码的类名依据，所以在业务单元的“名称”中，请不要使用中文。名称最好都以小写字母开头。

基础资料类别点F7选择业务单元，可以使用别名，这样容易找一些、建一个基础资料类别，就等于多连接一个表，显示什么字段自己选择。一般都是显示名称的，你懂的。

12月12日

1.新建基础资料，按分摊参数要求建模。

2.在元数据的app端的表中增加字段，在实体中增加字段。在query中导入新增的字段。(注意这些都要发布滴)

3.在元数据中要进行数据绑定，EditUI中，已绑定对象需要修改，在大纲的Data Objects的editData右键选择属性，将其type值更改即可。在已绑定的控件中将建模的控件都与相应的实体对应上。在ListUI中绑定对象，与EditUI相似的方式，之后为每一列都进行与实体的数据绑定。

4.在ListUI的大纲中的ToolBarPanel中，添加两个按钮，启用，禁用，在大纲中添加两个action，并分别将其与按钮进行绑定。即按钮的action属性要添加。（其实人家本身就有启用禁用，就是做练习）

5.将EditUI和ListUI发布。（别老忘发布行不行啊你）

6.java代码中，刷新一下下，编程。根据业务需求啦。

启用

public void actionStart_actionPerformed(ActionEvent e) throws Exception {

tblMain.checkParsed();

int[] rows=KDTableUtil.getSelectedRows(tblMain);//得到表中所有行

for(int i=0;i<rows.length;i++){//循环遍历，即支持批量

String id=tblMain.getRow(rows[i]).getCell("id").getValue().toString();//获得id。

TestApportionParaInfo paraInfo=TestApportionParaFactory.getRemoteInstance().getTestApportionParaInfo(new ObjectUuidPK(id));//通过id获得对象

paraInfo.setIsUsed(true);//设置启用状态为true

TestApportionParaFactory.getRemoteInstance().update(new ObjectUuidPK(id),paraInfo);//通过id将此对象存回去。

actionRefresh_actionPerformed(e);//刷新

}

this.btnStart.setEnabled(false);//将启用按钮置灰

this.btnStop.setEnabled(true);//将禁用按钮置为可用
}
禁用
public void actionStop_actionPerformed(ActionEvent e) throws Exception {

tblMain.checkParsed();

int[] rows=KDTableUtil.getSelectedRows(tblMain);

for(int i=0;i<rows.length;i++){

String id=tblMain.getRow(rows[i]).getCell("id").getValue().toString();

TestApportionParaInfo paraInfo=TestApportionParaFactory.getRemoteInstance().getTestApportionParaInfo(new ObjectUuidPK(id));

paraInfo.setIsUsed(false);

TestApportionParaFactory.getRemoteInstance().update(new ObjectUuidPK(id),paraInfo);

actionRefresh_actionPerformed(e);

}

this.btnStart.setEnabled(true);

this.btnStop.setEnabled(false);
}
表的行改变事件

在设计界面表格的属性，事件中双击，并发布，刷新java代码，就能写出该事件的方法啦，在方法中：

protected void tblMain_tableSelectChanged(KDTSelectEvent e)
throws Exception {
tblMain.checkParsed();
int[] rows=KDTableUtil.getSelectedRows(tblMain);
Boolean isUsed=new Boolean(false);
for(int i=0;i<rows.length;i++){
if(tblMain.getRow(rows[i]).getCell("isUsed").getValue()!=null){

isUsed=(Boolean)tblMain.getRow(rows[i]).getCell("isUsed").getValue();//得到当前行现在的状态
}
if(isUsed.equals(Boolean.FALSE)){

break;
}
}
if(isUsed){//设置一些相应的按钮状态
this.btnEdit.setEnabled(false);
this.btnRemove.setEnabled(false);
this.btnStart.setEnabled(false);
this.btnStop.setEnabled(true);
this.menuItemCancel.setEnabled(true);
this.menuItemCancelCancel.setEnabled(false);
this.menuItemRemove.setEnabled(false);
this.menuItemEdit.setEnabled(false);
}else{
this.btnEdit.setEnabled(true);
this.btnRemove.setEnabled(true);
this.btnStart.setEnabled(true);
this.btnStop.setEnabled(false);
this.menuItemCancel.setEnabled(false);
this.menuItemCancelCancel.setEnabled(true);
this.menuItemRemove.setEnabled(true);
this.menuItemEdit.setEnabled(true);
}
super.tblMain_tableSelectChanged(e);
}
验证，判空判重复

protected void verifyInput(ActionEvent actionevent) throws Exception {

if(this.editData.getNumber()==null||this.editData.getNumber()==""){

MsgBox.showWarning("单据编号不能为空！");

this.txtNumber.requestFocusInWindow();//返回该行焦点

this.abort();//终止

}

if(this.txtName.getDefaultLangItemData()!=null&&this.txtName.getDefaultLangItemData().toString().equals(""))

{

MsgBox.showWarning("名称不能为空！");

this.txtName.requestFocusInWindow();

this.abort();

}

FilterInfo filter=new FilterInfo();

filter.getFilterItems().add(new FilterItemInfo("number",this.txtNumber.getText(),CompareType.EQUALS));//做比较

if(this.editData.getId()!=null){

filter.getFilterItems().add(new FilterItemInfo("id",this.editData.getId(),CompareType.NOTEQUALS));

}

if(getBizInterface().exists(filter)){

MsgBox.showWarning("编号不能重复！");

this.txtNumber.requestFocusInWindow();

this.abort();

}

super.verifyInput(actionevent);
}

或

if(isCodeRuleEnable(this.editData)){

if(this.editData.getNumber()==null || this.editData.getNumber().equals("")){

this.txtNumber.setText(getAutoCode(this.editData));

}
}
else
{

String number=this.txtNumber.getText();

if(StringUtils.isEmpty(number))

{

MsgBox.showWarning("编码不能为空！");

this.txtNumber.requestFocusInWindow();

this.abort();

}
}
删除

public void actionRemove_actionPerformed(ActionEvent e) throws Exception
{

int flag = MsgBox.showConfirm2("是否确认删除记录？");

if(flag == 0){

//引用则不能被删除

tblMain.checkParsed();

int[] rows = KDTableUtil.getSelectedRows(tblMain);

for(int i=0;i<rows.length;i++)

{

String id = tblMain.getRow(rows[i]).getCell("id").getValue().toString();

FilterInfo filter=new FilterInfo();

filter.getFilterItems().add(new FilterItemInfo("id", id));

filter.getFilterItems().add(new FilterItemInfo("payCostIsUsed", false));

if(PayCostInfoFactory.getRemoteInstance().exists(filter)) {

PayCostInfoFactory.getRemoteInstance().delete(filter);

}

}

}else{

this.abort();

}

this.refresh(e);
 //super.actionRemove_actionPerformed(e);
}
初始化

public void onLoad() throws Exception {

super.onLoad();

if(!this.getOprtState().equals("ADDNEW"))//如果状态为新增

{

if(this.editData.isPayCostIsUsed())

{

this.btnEdit.setEnabled(false);

this.btnRemove.setEnabled(false);

this.menuItemEdit.setEnabled(false);

this.menuItemRemove.setEnabled(false);

}

else

{

this.btnEdit.setEnabled(true);

this.btnRemove.setEnabled(true);

this.menuItemEdit.setEnabled(true);

this.menuItemRemove.setEnabled(true);

}

}

if(this.getOprtState().equals("EDIT"))//如果状态为编辑

{

this.txtNumber.setEnabled(false);

}
}
12月14日

审核

public void actionShenhe_actionPerformed(ActionEvent e) throws Exception {

tblMain.checkParsed();

int[] rows=KDTableUtil.getSelectedRows(tblMain);

for(int i=0;i<rows.length;i++){

BizEnumValueDTO djState=(BizEnumValueDTO)tblMain.getRow(rows[i]).getCell("djState").getValue();//获得单据状态的枚举

if(djState.getValue().equals("2")){

//若单据状态为提交

String id=tblMain.getRow(rows[i]).getCell("id").getValue().toString();

TestHyssytzInfo entry=TestHyssytzFactory.getRemoteInstance().getTestHyssytzInfo(new ObjectUuidPK(id));

entry.setDjState(purType.able);

entry.setAuditor(SysContext.getSysContext().getCurrentUserInfo());//当前用户

entry.setShenheDate(SysUtil.getAppServerTime(null));//设置审核时间

TestHyssytzFactory.getRemoteInstance().update(new ObjectUuidPK(id), entry);

}

}

MsgBox.showInfo("审核成功！");

actionRefresh_actionPerformed(e);

super.actionShenhe_actionPerformed(e);
 }

反审核

 public void actionFanshenhe_actionPerformed(ActionEvent e) throws Exception {

tblMain.checkParsed();

int[] rows=KDTableUtil.getSelectedRows(tblMain);

for(int i=0;i<rows.length;i++){

String id=tblMain.getRow(rows[i]).getCell("id").getValue().toString();

TestHyssytzInfo entry=TestHyssytzFactory.getRemoteInstance().getTestHyssytzInfo(new ObjectUuidPK(id));

if(entry.getAuditor().getId().equals(SysContext.getSysContext().getCurrentUserInfo().getId())){

entry.setDjState(purType.excute);

entry.setAuditor(null);

entry.setShenheDate(null);

TestHyssytzFactory.getRemoteInstance().update(new ObjectUuidPK(id),entry);

if(rows.length==1){

MsgBox.showInfo("反审核成功！");

}

}else{

if(rows.length==1){

MsgBox.showInfo("反审核人必须为原审核人！");

this.abort();

}

}

}

actionRefresh_actionPerformed(e);

//super.actionFanshenhe_actionPerformed(e);
 }

导入

 public void actionImport_actionPerformed(ActionEvent e) throws Exception {

DatataskCaller task=new DatataskCaller();

task.setParentComponent(this);

task.setMainOrgContext(getMainOrgContext());

ArrayList param=getImportFinanceObject();

if(param!=null){

task.invoke(param, 0);

actionRefresh_actionPerformed(e);

}
 }
 protected ArrayList getImportFinanceObject(){

DatataskParameter param=new DatataskParameter();

String solutionName="TestHyssytz";//模板编码

param.solutionName=solutionName;

param.alias="测试会议室使用台账";//模板名字

param.varList=new ArrayList();

param.datataskMode=0;

ArrayList paramList=new ArrayList();

paramList.add(param);

return paramList;
 }

新建一个模板，就是上面solutionName要引用的模板，为模板添加一个类，这个类要写在服务器端，要继承AbstractDataTransmission这个抽象类，还要为模板添加相应的字段。在类中进行具体操作，类如下：

public class TestMeetRoomTransmission extends AbstractDataTransmission {

protected ICoreBase getController(Context ctx)

throws TaskExternalException {

try {

return TestHyssytzFactory.getLocalInstance(ctx);//下次还是复制吧，省得忘了return。

} catch (BOSException e) {

e.printStackTrace();

return null;

}

}

public CoreBaseInfo transmit(Hashtable hsData, Context ctx)

throws TaskExternalException {

TestHyssytzInfo hysInfo=new TestHyssytzInfo();

String str=null;

Hashtable baseData = hsData;

FilterInfo filter = new FilterInfo();

EntityViewInfo viewInfo=new EntityViewInfo();

try {

ITestHyssytz ith=TestHyssytzFactory.getLocalInstance(ctx);//获得对象

str = getDataString(baseData,"number");//通过字段值获取页面上的值

if(str==null||"".equals(str.trim())){

throw new TaskExternalException("单据编码不能为空");

}

filter.getFilterItems().add(new FilterItemInfo("number",str,CompareType.EQUALS));

if(ith.exists(filter)){

throw new TaskExternalException("单据编码不能重复");

}else{

ith.delete(filter);

}

hysInfo.setNumber(str);//将编码存进去

hysInfo.setDjState(purType.excute);//设置状态

//str=getDataString(baseData, "remark");

hysInfo.setDescription(str);

TestHyssytzEntryCollection entrys=new TestHyssytzEntryCollection();

TestHyssytzEntryInfo entryInfo=new TestHyssytzEntryInfo();//new分录

str=getDataString(baseData, "userDept");

if(str==null||"".equals(str.trim())){

throw new TaskExternalException("使用部门编码不能为空");

}

filter = new FilterInfo();//再用时要重新new一个哦

filter.getFilterItems().add(new FilterItemInfo("number",str,CompareType.EQUALS));

viewInfo.setFilter(filter);

CostApportionObjectTypeCollection apportionCols=CostApportionObjectTypeFactory.getLocalInstance(ctx)

.getCostApportionObjectTypeCollection(viewInfo);

//通过部门编码获得相应的对象

if(apportionCols!=null&&apportionCols.size()>0){

entryInfo.setUserDept(apportionCols.get(0));//将分录中的使用部门存上值

}else{

throw new TaskExternalException("使用部门编码不存在");

}

str=getDataString(baseData, "ftAccount");

if(str==null||"".equals(str.trim())){

throw new TaskExternalException("分摊金额不能为空");

}

Double money=Double.parseDouble(str);

BigDecimal bdmoney=new BigDecimal(money);

entryInfo.setFtAccount(BigDecimal.valueOf(bdmoney.setScale(2,BigDecimal.ROUND_HALF_UP).doubleValue()));

str=getDataString(baseData, "remark");

entryInfo.setRemark(str);

entrys.add(entryInfo);

hysInfo.put("entrys",entrys);//将整个分录存进去

} catch (BOSException e) {

e.printStackTrace();

} catch (EASBizException e) {

e.printStackTrace();

}

return hysInfo;

}
 /**
 * 根据字段名获得页面值
 */

public static String getDataString(Hashtable hsData, String fieldName){

return (String)((DataToken)hsData.get(fieldName)).data;

}
}

12月16日

通过给F7加监听，做F7的值改变事件，也可以直接加事件来写

 在onload方法中给控件加监听

 this.prmtftcs

.addChangeListener(new javax.swing.event.ChangeListener() {

public void stateChanged(javax.swing.event.ChangeEvent e) {

try {

setClassFilter(e);

} catch (Exception exc) {

handUIException(exc);

} finally {

}

}

});

public void setClassFilter(ChangeEvent e) throws BOSException {

//根据分摊参数选择的编码改变费用台账中的值。

FilterInfo fInfo = new FilterInfo();

TestApportionParaInfo info=(TestApportionParaInfo)this.prmtftcs.getData();

fInfo.getFilterItems().add(new FilterItemInfo("number",info.getNumber().toString(),CompareType.EQUALS));

EntityViewInfo viewInfo = new EntityViewInfo();

viewInfo.setFilter(fInfo);

FytzDtbcxxlbCollection carInfo=FytzDtbcxxlbFactory.getRemoteInstance().getFytzDtbcxxlbCollection(viewInfo);

if(carInfo.size()>0)

{

FytzDtbcxxlbInfo xxinfo=carInfo.get(0);

this.prmtfytz.setValue(xxinfo);

}else{

MsgBox.showInfo("没有这个编码！");

this.prmtfytz.requestFocusInWindow();

this.abort();

}

}

通过条件过滤F7

public void setClassFilter2() {

FilterInfo fInfo = new FilterInfo();

fInfo.getFilterItems().add(new FilterItemInfo("number","201101",CompareType.EQUALS));

EntityViewInfo viewInfo = new EntityViewInfo();

viewInfo.setFilter(fInfo);

this.prmtcarQijian.setEntityViewInfo(viewInfo);

}

分录值改变事件

 public void EntrysValueChange() {

kdtEntrys.addKDTPropertyChangeListener(new KDTPropertyChangeListener() {

public void propertyChange(KDTPropertyChangeEvent e) {

int rowIndex = e.getRowIndex();

int colIndex = e.getColIndex();

int carUseDept = kdtEntrys.getColumnIndex("carUseDept");

IRow row = kdtEntrys.getRow(rowIndex);

if (colIndex == carUseDept) {

CostObjectInfo coInfo = (CostObjectInfo) e.getNewValue();

row.getCell("carRemark").setValue(coInfo);

}

}

});

}

12月19日

合计汇总

 public void setTotal()
 {

this.setTableToSumField(kdtEntrys, new String[]{"carKiloM"});
//大括号中是需要汇总的列
 }

在分录上增加按钮

 private void addButtonToHMDEntry(KDTable table, KDWorkButton button) {
 if (table.getParent() == null || table.getParent().getParent() == null)
 return;
 // 获取底层面板
 Component c = table.getParent().getParent();
 if (c instanceof DetailPanel) {
 JPanel panel = (JPanel) c;
 JPanel controlPanel = null;
 //
 Component[] components = panel.getComponents();
 for (int i = 0; i < components.length; i++) {
 Component component = components[i];
 if ("controlPanel".equals(component.getName())) {
 controlPanel = (KDPanel) component;
 }
 }
 // 设置btn
 if (controlPanel != null) {
 Rectangle rect = table.getBounds();
 int x = rect.width - (button.getWidth() + 86 + 5);
 controlPanel.add(button, new com.kingdee.bos.ctrl.swing.KDLayout.Constraints(x, 5, button.getWidth(), 19, 9));
 }
 }
 }
 //初始化时候加载按钮
 public void initUIContentLayout() {
 super.initUIContentLayout();
 addButtonToHMDEntry(this.kdtEntrys, kDWorkButton1);//最后一个是你自己加的按钮的name，不管你这个按钮添加时候放在哪，都会变到分录那里去滴
 }

通过按钮批量添加分录中的数据

 新建一个listUI界面，记住要继承相应的父UI，或直接继承ListUI。

在新界面画好相应的列和确认，取消两个按钮，为两个按钮绑action。

 public void onLoad() throws Exception {

this.btnConfirm.setEnabled(true);

this.btnExit.setEnabled(true);

super.onLoad();
 }
 public void actionConfirm_actionPerformed(ActionEvent e) throws Exception {

int[] index=KDTableUtil.getSelectedRows(tblMain);

if(index.length<=0){

MsgBox.showInfo("请选择单据");

return;

}

List mapValue=new ArrayList();

for(int i=0;i<index.length;i++){

Map subMap=new HashMap();

if(tblMain.getRow(index[i]).getCell("number").getValue()!=null){

subMap.put("number", tblMain.getRow(index[i]).getCell("number").getValue());

}

if(tblMain.getRow(index[i]).getCell("name").getValue()!=null){

subMap.put("name", tblMain.getRow(index[i]).getCell("name").getValue());

}

if(tblMain.getRow(index[i]).getCell("simpleName").getValue()!=null){

subMap.put("simpleName", tblMain.getRow(index[i]).getCell("simpleName").getValue());

}

mapValue.add(subMap);

}

UIContext uiContext=new UIContext();

uiContext.put(UIContext.OWNER, this);

uiContext.put("selectTest", mapValue);

this.uiWindow.getUIObject().getUIContext().put("selectTest", mapValue);

prepareUIContext(uiContext, e);

this.uiWindow.close();
 }
 public void actionExit_actionPerformed(ActionEvent e) throws Exception {

this.uiWindow.close();

super.actionExit_actionPerformed(e);
 }

在你的原界面中，为那个按钮也绑一个action，点击时能够弹出新界面。并实现父子界面之间的传值。

 public void actionTanChuang_actionPerformed(ActionEvent e) throws Exception {

FilterInfo filter=null;

EntityViewInfo viewInfo=null;

UIContext uicontext = new UIContext(this);

uicontext.putAll(this.getUIContext());

uicontext.put(UIContext.OWNER,this);

IUIWindow iUIWindow=UIFactory.createUIFactory(UIFactoryName.MODEL).create(TestF7ListUI.class.getName(), uicontext,null,OprtState.ADDNEW);

iUIWindow.show();

List mapValue=(List)iUIWindow.getUIObject().getUIContext().get("selectTest");

Iterator iter=mapValue.iterator();//迭代map

while(iter.hasNext()){

Map map=(Map)iter.next();

IRow row=kdtEntrys.addRow();

filter=new FilterInfo();

filter.getFilterItems().add(new FilterItemInfo("number",map.get("number"),CompareType.EQUALS));

viewInfo=new EntityViewInfo();

viewInfo.setFilter(filter);

CostObjectCollection coll=CostObjectFactory.getRemoteInstance().getCostObjectCollection(viewInfo);

if(coll!=null&&coll.size()>0){

row.getCell("carUseDept").setValue(coll.get(0));

}

row.getCell("carArraive").setValue(map.get("name"));

row.getCell("carRemark").setValue(map.get("simpleName"));

}
 }
12月21日

扩展报表

商业分析→报表服务平台→扩展报表

Sql数据集，扩展报表。。。。各种操作，不赘述。。

过滤界面

新建一个FilterUI，继承自CustomerQueryPanel.ui。发布元数据。

在FilterUI的java代码中重写getFilterInfo()方法

public void onLoad() throws Exception {

super.onLoad();

this.kDBizPromptBox1.setEnabledMultiSelection(true);
 }
 public FilterInfo getFilterInfo() {

FilterInfo filter = null;

if(super.getFilterInfo()!=null){

filter = super.getFilterInfo();

}else{

filter = new FilterInfo();

}

FilterInfo andFilter=new FilterInfo();

Set muSet=new HashSet();

Object[] gkCols=(Object[])this.kDBizPromptBox1.getData();

if(gkCols!=null){

for(int i=0;i<gkCols.length;i++){

MeasureUnitInfo mui=(MeasureUnitInfo)gkCols[i];

if(mui!=null&&mui.size()>0){

muSet.add(mui.getId());

}

}

andFilter.getFilterItems().add(new FilterItemInfo("calcu.id",muSet,CompareType.INCLUDE));

}

try {

filter.mergeFilter(andFilter, "and");

} catch (BOSException e) {

// TODO Auto-generated catch block

e.printStackTrace();

}

return filter;
 }

在ListUI的java代码中

 protected boolean initDefaultFilter() {

// TODO Auto-generated method stub

return true;
 }
 protected FilterInfo getDefaultFilterForQuery() {

FilterInfo allFilter = super.getDefaultFilterForQuery();

if(allFilter==null){

allFilter=new FilterInfo();

}

try {

if(this.getUIContext().get("andFilter")!=null){

FilterInfo fInfo=(FilterInfo)this.getUIContext().get("andFilter");

allFilter.mergeFilter(fInfo, "and");

}

} catch (BOSException e) {

// TODO Auto-generated catch block

e.printStackTrace();

}

return allFilter;
 }
 protected boolean isIgnoreCUFilter() {

return true;
 }
 protected CommonQueryDialog initCommonQueryDialog() {

CommonQueryDialog queryDlg = super.initCommonQueryDialog();

queryDlg.addUserPanel(getFilterUI());

queryDlg.setDynQueryVisible(true);

return queryDlg;
 }
 public KDPanel getFilterUI() {

try {

return new TestApportionParaFilterUI();

} catch (Exception e) {

handleException(e);

}

return null;

}

12月22日

同步Svn

小组更新，不要轻易提交，先入局即可。提交只提交自己写的，提交前打招呼。

版本控制全选之后，在上面写上修改人，修改内容，修改时间等。

挂菜单可以用Administrator登录去挂。
12月23日

基础资料加合计项时，Query里先给相应的字段添加扩展属性，是否为统计字段设置成true。再在ListUI中写合计的代码。

【注】

新增字段名称的输入长度要控制在15个字符以内。

字段定义里如果不勾选“是否需要界面”，则表示该字段不显示在界面上，仅作为一个字段属性。

字段在保存前可以做任意修改，但是保存后只允许修改标题，其他信息不允许修改。

录入时的键盘顺序可以在“字段管理”中的“录入顺序调整”页签上修改，也可以在该页签中修改该字段是否在界面上可见，此外还有“查询顺序管理”，可以设置列表界面上的显示顺序。

“金额”属性的数据类型要选用BigDecimal。

Query中，对于查询字段，需要注意“可见性”这个选项，若不选择该项，则select中将不出现该字段，但它还可用于where或order by子句中。

尽量使用Selector来限制查询数据量，一般是只将程序中引用到的属性加入Selector。

所有的金额，数量属性统一用BigDecimal类型。并且用BigDecimal(String)构造器。

不要在服务端调用Query执行查询操作。

服务端的Context中存储了当前登录信息，可以通过ContextUtil来获取，要正确认识何时使用这些信息，如在对单据的合法性进行校验时应该使用单据所属公司而不是登录信息中的当前公司。

数据库资源，包括结果集、语句、连接等要及时释放，一般写在一个finally子句中。

客户端用SysContext存储当前登录信息。

【部分代码整理】

 this.btnRemove.setVisible(false);//置灰
 this.txtNumber.setEnabled(true);//置为可用
 this.getOprtState().equals("ADDNEW");//如果状态为新增则返回true。
 this.editData.getNumber();//获取Edit界面上的编码
 this.editData.getId().toString();//获取ID，注意取出的id若要使用其值则应该toString()
 StringUtils.isEmpty(this.txtNumber.getText());//获取页面编码文本框中内容并判空
 MsgBox.showWarning("编码不能为空");//弹出警告框
 MsgBox.showComfirm2("是否确认删除？");//弹出提示框，返回布尔值
 this.txtNumber.requestFocusInWindow();//返回时获取txtNumber文本框的焦点
 this.abort();//相当于return
 String companyId = OrgInnerUtils.getCurCompany();//获取当前的公司的id，公司属于财务组织
 ICodingRuleManager codeRuleMgr = CodingRuleManagerFactory.getRemoteInstance();//获取编码规则管理的实例
 codeRuleMgr.isExist(this.editData,companyId);//判断当前页面的数据中是否存在关于companyId的编码规则
 codeRuleMgr.isUseIntermitNumber(this.editData,companyId)//判断是否启用断号支持
 codeRuleMgr.getNumber(this.editData,companyId);//如果启用断号支持，则获取编码规则产生的编码
 codeRuleMgr.readNumber(this.editData,companyId);//如果没启用断号支持，则读取当前最新编码
 this.chkisUsed.setSelected(true);//设置复选框为选中状态
 this.txtName.getDefaultLangItemData().toString()//获取txtName中的值
 FilterInfo filter = new FilterInfo();//过滤条件值对象
 filter.getFilterItems().add(new FilterItemInfo("number",this.txtNumber.getText(),CompareType.EQUALS));//具体过滤条件
 getBizInterface().exists(filter)//判断是否存在符合该过滤条件的，相当于Factory类.getRemoteInstance().exists(filter)
 tblMain.checkParsed();//在List界面，想要用表格中内容，必须写这个哇（在Edit界面想要获得分录中内容，需写kdtEntrys.checkParsed();）
 KDTableUtil.getSelectedRows(tblMain);//获取表中的行，返回一个int型数组
 tblMain.getRow(rows[i]).getCell("id").getValue().toString();//循环获取每一行的"id"列的值
 ApportionParaFactory.getRemoteInstance().delete(filter);//根据过滤条件删除
 this.refresh(e);//刷新界面
 beforeExcutQuery(){}//超类中的方法，该List界面超类中的方法可以用来排序
 SorterItemCollection sortCol = new SorterItemCollection();//实例化一个排序集合
 SorterItemInfo sort1 = new SorterItemInfo("number");//根据number字段的值实例化一个值对象，进行排序，可以有多个sort
 sort1.setSortType(SortType.ASCEND);//设置升序，降序为DESCEND
 sortCol.add(sort1);//将一个排序条件加入到集合中
 EntityViewInfo.setSorter(sortCol);//为界面的实体值对象进行排序
 EntityViewInfo.getSorter().add(new SorterItemInfo("number"));//添加排序条件
 isIgnoreCUFilter(){}//该方法设置是否忽略CU(即控制单元)隔离，取消隔离时，return true;
 isIgnoreTreeCUFilter(){}//作用同上，用于tree
 ApportionParaInfo paraInfo = ApportionParaFactory.getRemoteInstance().getApportionParaInfo(new ObjectUuidPK(id));//根据每一行记录具体的id值实例化该界面实体的值对象。
 paraInfo.setIsUse(false);//为具体值对象设置值。
 ApportionParaFactory.getRemoteInstance().update(new ObjectUuidPK(id),paraInfo);//将设置好值的值对象再塞回去就完成了更新操作。
 actionRefresh_actionPerformed(e);//刷新界面
 TestTreeInfo treeNode = (TestTreeInfo)getSelectedTreeNode().getUserObject();//获得树的节点的值对象(当前点击的节点)
 filter.getFilterItems().add(new FilterItemInfo("parent.longnumber",treeNode.getLongNumber()));//过滤条件，看是否是父节点，是父节点而不是叶子节点时，不能删除
 filter.getFilterItems().add(new FilterItemInfo("treeid.longNumber",treeNode.getLongNumber()));//过滤条件，若该节点下有明细数据，则不能被删除
 TrainVerifyUtils.verifyInput(this,this.kdtParaEntry,"paraNumber");//校验kdtable单元格是否为空(UI,kdtentries,i具体某一列索引)
 EntityViewInfo viewIndo = new EntityViewInfo();
 filter.getFilterItems().add(new FilterItemInfo("IsUse",Boolean.TRUE,CompareType.EQUALS));//这里为只显示启用状态的数据
 viewInfo.setFilter.(filter);
 KDBizPromptBox prmt = (KDBizPromptBox)this.kdtParaEntry.getColumn("paraNumber").getEditor().getComponent();//若是单据头的过滤则不需要这一步
 prmt.setEntityViewInfo(viewInfo);//分录中的通过条件过滤F7
 this.kdtParaEntry.getRowCount();//获得分录的行数，通常用于for循环取每一行
 IRow row = this.kedParaEntry.getRow(rowindex);//根据索引取一行
 row.getCell("paraNumber").getValue();//根据列名取一个单元格中的数据，当是F7的时候，需要强制类型转换成相应类型
 row.getCell("paraNumber").setValue(null);//在一些特定条件下，将其手动置空
 int rowIndex = e.getRowIndex();//在分录上触发的事件，都可以通过此方法获取触发此事件的行索引，以及通过e.getColIndex()获得当前列索引
 this.kdtParaEntry.getColumnKey(colIndex);//通过列索引获取字段名
 this.kdtParaEntry.getCell(rowIndex,"paraName").setValue();//通过行索引和字段名得到一个单元格并为其赋值
 Map map = (Map)this.getUIContext();//这是一个map，用于界面传值时，通过map.get("字段名")取值对象
 this.prmtcostType.setData(ctInfo);//给F7赋值
 SelectorItemCollection sic = new SelectorItemCollection();//查询具体字段时用
 sic.add(new SelectorItemInfo("paraNumber.*"));//添加具体查询字段，paraNumber.*表示查询该f7字段对象中的所有列，正常字段应如paraName
 viewInfo.setSelector(sic);//类似viewInfo.setFilter(filterInfo);添加查询条件，查询字段
 SysUtil.getAppServerTime(null)//获取服务器端时间
 UserInfo user = SysContext.getSysContext().getCurrentUserInfo();//获取当前用户
 this.kdtEntrys.getRow(rows[i]).getCell("period").getStyleAttributes().setLocked(true);//设置该列为锁定状态，也可以直接锁定一行
 //使用KDTree，必须使用KingdeeTreeModel和DefaulKingdeeTreeNode
 DefaultKingdeeTreeNode rootNode = new DefaultKingdeeTreeNode();//new一个根节点
 rootNode.setText("树的名称");
 rootNode.removeAllChildren();//移除所有孩子节点，将其置空
 KDTree kdtreee = new KDTree(rootNode);//重新new一个KDTree
 this.KDTreeView1.remove(this.kdtree);//将默认的kdtree删除
 this.KDTreeView1.add(kdtreee);//将自己new的KDTree加进去
 addNodeInfo(MutableTreeNode newChild,MutableTreeNode parent)//在父节点下的最后插入子节点
 insertNodeInto(MutableTreeNode newChild,MutableTreeNode parent,int index)//在父节点下的指定位置插入子节点（0<index<parent.getChildCount()）
 removeNodeFromParent(MutableTreeNode node)//删除节点
 removeAllChildrenFromParent(MutableTreeNode parent)//删除节点的所有子节点
 setCustomIcon(Icon icon)//设置节点图标
 setTextColor(Color color)//设置节点文本颜色
 setTextBold(boolean bold)//设置节点文本是否粗体
 ((KingdeeTreeUI)tree.getUI()).resetSize();或((DefaultTreeModel)tree.getModel()).nodeChanged(node);//节点文字长度在通过setText()或setTextBold改变之后需要刷新
 setShowCheckBox(boolean showCheckBox)//设置节点是否显示CheckBox，默认为false（KDTree）
 setSyncChecked(boolean syncChecked)//设置当节点的check属性变化时是否同步它的父子等节点的checked属性（KDTree）
 setCheckBoxVisible(boolean b)//设置是否有checkBox，默认为true（DefaultKingdeeTreeNode）
 setCheckBoxEnabled(boolean b)//设置checkBox是否有效，默认为true（DefaultKingdeeTreeNode）
 setRootVisible(boolean rootVisible)//设置是否显示根节点，默认为true
 setShowRootHandles(boolean newValue)//设置是否显示根节点前的“展示/收缩”图示，默认为false
 expandAllNodes(boolean expand,TreeNode node)//对目标节点全展或全收
 setCollapsePathDisabled(boolean b)//设置节点不能收缩，（对组织架构展示的特殊支持：开始全展开，不显示“展示/收缩”图示，且不能收缩）
 public TreePath[] getSelectionPaths()//获取所有选中节点的path
 TreePath path = tree.getSelectionPath()//获取第一个选中节点的path
 DefaultKingdeeTreeNode node = (DefaultKingdeeTreeNode)path.getLastPathComponent();//通过得到的path从而得到节点
 setSelectionNode(DefaultKingdeeTreeNode node)//设置选中节点的易用性接口
 tree.getSelectionModel().setSelectionMode(TreeSelectionModel.CONTIGUOUS_TREE_SELECTION);//单选/多选模式。参数可选:DISCONTIGUOUS_TREE_SELECTION多选不连续(默认),CONTIGUOUS_TREE_SELECTION多选连续,SINGLE_TREE_SELECTION单选
 //下面方法用于弹出右键菜单
 tree.addTreePopupMenu(new TreePopupMenuListener(){

public boolean popMenu(TreePopupMenuEvent event){

//可以在此动态加菜单项

return true;

}
 });
 //下面方法是加固定菜单项，即对于整棵树的所有节点都有的菜单项
 JMenuItem menuitem = new JMenuItem("重命名");
 tree.getPopupMenu().add(menuitem);
 menuitem.addActionListener(new ActionListener(){

public void actionPerformed(ActionEvent event){

TreePath path = tree.getSelectionPath();

tree.startEditingAtPath(path);

}
 });
 //结合以上两个方法，加动态菜单项，即对于树的不同节点可能有不同的菜单项。注意必须加上以下代码
 menu.addPopupMenuListener(new PopupMenuAdapter(){

//菜单关闭时，必须移除选项及其监听

public void popupMenuWillBecomeInvisible(PopupMenuEvent e){

menu.remove(menuitem);

menu.removePopupMenuListener(this);

}
 });
 setShowPopMenuDefaultItem(boolean b)//设置是否显示右键弹出菜单的五个如“展开/收缩”等操作的常用选项，默认为true，也可以隐去。
 this.treeMain.getPopupMenu().removeAll();//去掉树的右键菜单
 tree.addTreeSelectionListener()//监听选中节点
 tree.addTreeNodeStateChangeListener()//监听checkBox状态改变
 DefaultKingdeeTreeNode node = (DefaultKingdeeTreeNode)event.getNode();//节点的监听事件中，获取该节点
 node.isChecked()//看该节点是否被选中
 ((KingdeeTreeModel)tree.getModel()).setAsksAllowsChildren(true);//默认为false，为了使node无论有没有子节点都以文件夹图标显示，将其设为true
 node.setAllowsChildren(true);//默认其实就是true，对于希望成为文件夹的节点node。
 【注】:不要从节点的角度去移除节点，要从树的模上增删节点
 KDTreeView treeView = new KDTreeView(tree);//KDTreeView实现了对KDTree的包装，将KDTree置于KDScrollPane中，并加上标题栏和操作按钮
 treeView.getTree()//取得KDTree
 setShowControlPanel(boolean isShow)//设置顶端的标题栏是否可见
 treeView.setTitle(String title)//设置TreeView标题
 treeView.setShowButton(boolean showButton)//设置五个常用的按钮是否显示，五个按钮状态一致
 treeView.getControlPane().add(kdworkbutton);//新增按钮
 UIContext uiContext = new UIContext(this);//为本页面new一个UIContext，用于为新弹出界面传值
 uiContext.put("key",value);//相当于存入map里，用于在另一个界面取值
 prepareUIContext(uiContext,e);//在ListUI界面点击新增的action中，将uiContext传递到EditUI界面
 this.getUIContext().putAll(uiContext);//uiContext是Map类型的，将map里的键值对都放进去
 this.getSelectedTreeNode().getLevel()//获取该节点与根节点的距离，若==0则代表该节点为根节点，可以做相应判断，如若该节点为根节点，则说明用户没有选择具体分类
 getDefaultFilterForTree(){}//超类中的方法，树的默认过滤条件，如只过滤已经启用的
 company = InitClientHelp.getCurrentCompany();//获取当前公司的对象
 table = (AccountTableInfo)AccountTools.getAccountTableCollection().get(0);//科目表用的
 filter.setMaskString("#0 and #1 and #2 andor ...");//对过滤条件的逻辑的设置
 KDBizPromptBox KDBizPromptBox1 = (KDBizPromptBox)this.kdtable1.getColumn("accounts").getEditor.getComponent();//获取该列的编辑器组件
 KDBizPromptBox1.setCommitFormat("$number$");//绑数据
 KDBizPromptBox1.setQueryInfo("com.kingdee.eas.basedata.master.account.app.F7AccountViewQuery");//绑Query
 KDTDefaultCellEditor tblMain_prmtAccount_CellEditor = new KDTDefaultCellEditor(KDBizPromptBox1);//new一个单元格编辑器
